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Modeling and simulation of multilane traffic flow

Dirk Helbing and Andreas Greiner
II. Institute of Theoretical Physics, University of Stuttgart, 70550 Stuttgart, Germany

~Received 8 August 1996!

A most important aspect in the field of traffic modeling is the simulation of bottleneck situations. For their
realistic description a macroscopic multilane model for unidirectional freeways including acceleration, decel-
eration, velocity fluctuations, overtaking, and lane-changing maneuvers is systematically deduced from a
gas-kinetic~Boltzmann-like! approach. The resulting equations contain corrections with respect to previous
models. For efficient computer simulations, a reduced model delineating the coarse-grained temporal behavior
is derived and applied to bottleneck situations.@S1063-651X~97!01305-6#

PACS number~s!: 51.10.1y, 89.40.1k, 47.90.1a, 34.90.1q
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I. INTRODUCTION

Apart from microscopic traffic models, in the last fou
decades a number of interrelated macroscopic traffic mo
have been proposed@1–10#. The motivations for developing
these were to describe and understand the instabilities of
fic flow @5–8,10–12#; to optimize traffic flow by means o
on-line speed-control systems@13–15#; to make short-term
forecasts of traffic volumes for rerouting measures@16–18#;
to calculate the average travel times, fuel consumption,
vehicle emissions in dependence on traffic volume@4,19#;
and to predict the effects of additional roads or lanes@19–
22#. Most of these models are restricted to unidirectio
freeway traffic and treat the different lanes of a road in
overall manner, i.e., like one lane with higher capacity a
possibilities for overtaking. However, this kind of simplifi
cation is clearly not applicable if there is a disequilibriu
between neighboring lanes. Therefore some researchers
ried out empirical investigations of the observed density
cillations between neighboring lanes or proposed models
their mutual influences@23–28#.

However, these are phenomenological models which t
interlane interactions in a rather heuristic way. Moreov
most of them base on the simple traffic flow model of Ligh
hill and Whitham which assumes average velocity on e
lane to be in equilibrium with density. This assumption is n
very well justified, especially for unstable traffic which
characterized by evolving stop-and-go waves@5–8,10–12#.
It is also questionable for lane mergings or on-ramp tra
where frequently a disequilibrium occurs@5,8#. However, in-
stabilities or disequilibria may decrease the freeway capa
considerably.

Another approach including a phenomenological veloc
equation has been proposed by Michalopouloset al. @28#. It
bases on Payne’s model@3,4#, which has been severely crit
cized for several reasons@5,10,29–34#. Therefore we will
derive a consistent macroscopic multilane model from agas-
kinetic level of description. This is related to Paver
Fontana’s approach~cf. Sec. II!, but explicitly takes into ac-
count overtaking and lane-changing maneuvers. T
corresponding Boltzmann-like model allows one to dedu
macroscopic traffic equations not only for the vehicle den
ties on the different lanes, but also for the associated ave
velocities~cf. Sec. III!. Due to different legal regulations, th
551063-651X/97/55~5!/5498~11!/$10.00
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traffic dynamics on American freeways is different from th
on European ones~which will be called ‘‘autobahns’’ in
accordance with Ku¨hne and Ro¨diger @13,6#!.

For efficient computer simulations of large parts of a fre
way system it is desirable to have a somewhat simp
model. Therefore in Sec. IV we will eliminate the veloci
equations and derive a reduced multilane model for the t
fic dynamics on a slow time scale. By means of compu
tional results it is demonstrated that even the difficult bott
neck situations can be successfully simulated with t
model.

A summary and outlook is presented in Sec. V. Howev
before themacroscopicmultilane model sketched in Ref
@35# is founded, derived, simplified, and simulated, the alt
nativemicroscopicapproaches shall be mentioned. One cla
of microsimulation models bases on cellular automata, l
the ones by Rickertet al. @36# and Nagatani@37#. These up-
date the vehicle dynamics within two successive steps: ei
the vehicle motion in one step and lane changing in the n
step@36#, or the left lane in the first step and the right lane
the second one@37#. Bottlenecks were represented b
crashed cars with zero velocity@37#. Noteworthy are also the
event-oriented model by Wiedemann and Benz@38# and the
social force model by Helbing and Schwarz@19#.

II. BOLTZMANN-LIKE MULTILANE THEORY

The first Boltzmann-like~gas-kinetic! model was pro-
posed by Prigogine and co-workers@39–41#. However,
Paveri-Fontana@42# has pointed out that this model has som
peculiar properties. For this reason, Paveri-Fontana propo
an improved model that overcomes most of the shortcomi
of Prigogine’s approach. Nevertheless, his model still tre
the lanes of a multilane road in an overall manner. Theref
an extended Paveri-Fontana-like model will now be co
structed.

Let us assume that the motion of an individual vehic
a can be described by several variables such as itslane
i a(t), its place ra(t), its actual velocityva(t), and itsde-
sired velocityv0a(t) in dependence on timet. The phase-
space densityr̂ i(r ,v,v0 ,t) is then determined by the numbe
Dni(r ,v,v0 ,t) of vehicles on lanei that are at a place be
tweenr2Dr /2 andr1Dr /2, driving with a velocity between
v2Dv/2 and v1Dv/2, and having a desired velocity be
5498 © 1997 The American Physical Society
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tweenv02Dv0/2 andv01Dv0/2 at timet:

r̂ i~r ,v,v0 ,t !5
Dni~r ,v,v0 ,t !

DrDvDv0
5

1

DrDvDv0
(
a

d i i a~ t !

3E
r2Dr /2

r1Dr /2

dr8d„r 82r a~ t !…

3E
v2Dv/2

v1Dv/2
dv8d„v82va~ t !…

3E
v02Dv0/2

v01Dv0/2
dv08d„v082va

0~ t/!…. ~1!

Here,Dr , Dv, andDv0 are small intervals.d i j denotes the
Kronecker symbol andd(x2y) Dirac’s delta function. The
notation ‘‘t”’’ indicates that a time dependence only occurs
exceptional cases. Lane numbersi are counted in increasin
order from the right most to the left most lane, but in Gre
Britain and Australia the other way around.~For Great Brit-
ain and Australia ‘‘left’’ and ‘‘right’’ must always be inter-
changed.!

Now we utilize the fact that, due to the conservation
the number of vehicles, the phase-space den
r̂ i(r ,v,v0 ,t) on lane i obeys the continuity equatio
@19,42,43#

]r̂ i
]t

1
]

]r
~ r̂ iv !1

]

]v
~ r̂ i f i

0!

5S ]r̂ i
]t

D
ad

1S ]r̂ i
]t

D
int

1S ]r̂ i
]t

D
LC

1 n̂ i
1~r ,v,v0 ,t !

2 n̂ i
2~r ,v,v0 ,t !. ~2!

The second and third terms describe temporal changes o
phase-space densityr̂ i(r ,v,v0 ,t) due to changesdr/dt5v
of placer and due to accelerationf i

0 , respectively. We will
assume that the vehicles accelerate to their desired velo
v0 with a certain, density-dependent relaxation timet i , so
that we have the acceleration law

f i
0~r ,v,v0 ,t !5

v02v
t i

. ~3!

The terms on the right-hand side of Eq.~2! reflect changes o
phase-space densityr̂ i(r ,v,v0 ,t) due to discontinuous
changes of desired velocityv0, actual velocityv, or lanei .
n̂ i

1(r ,v,v0 ,t) andn̂ i
2(r ,v,v0 ,t) are the rates of vehicles en

tering and leaving the road at placer . They are only different
from zero for merging lanes at entrances and exits, res
tively.

The term

S ]r̂ i
]t

D
ad

5
r̃ i~r ,v,t !

Tr
@ P̂0i~v0 ;r ,t/!2P0i~v0 ;r ,t !#, ~4!

where
t

f
ty

the

ity

c-

r̃ i~r ,v,t !5E dv0r̂ i~r ,v,v0 ,t ! ~5!

is a reduced phase-space density andTr'1 s is about the
reaction time, describes an adaptation of theactualdistribu-
tion of desired velocitiesP0i(v0 ;r ,t) to the reasonabledis-
tribution of desired velocitiesP̂0i(v0 ;r ,t”) without any re-
lated change of actual velocityv.

For the reasonable distribution of desired velocities
will assume the functional dependence

P̂0i~v0 ;r ,t”!5
1

A2pû0i
e2(v02V̂0i )

2/(2û0i ), ~6!

which corresponds to a normal distribution and is emp
cally well justified @44,24,19#. The mean value
V̂0i5V̂0i(r ,t”) and varianceû0i5 û0i(r ,t”) of P̂0i(v0 ;r ,t”) de-
pend on road conditions and speed limits. Since Europ
autobahns usually do not have speed limits~at least in Ger-
many!, û0i is larger for these than for American freeways.
addition, on European autobahnsV̂0i increases with increas
ing lane numberi since overtaking is only allowed in th
left-hand lane.

Before we specify the Boltzmann-like interaction ter
(]r̂ i /]t) int and the lane-changing term (]r̂ i /]t)LC we will
discuss some preliminaries. For reasons of simplicity we w
only treat vehicle interactions within thesamelane asdirect
pair interactions, i.e., in a Boltzmann-like manner@45#.
Lane-changing maneuvers of impeded vehicles that wan
escape a queue~i.e., leave and overtake it! may depend on
interactions of up to six vehicles~the envisaged vehicle, th
vehicle directly in front of it, and up to two vehicles on bo
neighboring lanes which may prevent overtaking if they a
too close!. Therefore we will treat lane-changing maneuve
in an overall manner by specifying overtaking probabiliti
and waiting times of lane-changing maneuvers~which corre-
sponds to amean-field approach, see Ref.@45#!. These prob-
abilities and waiting times are dependent on the vehicle d
sities and may also depend on other quantities.

For not too large vehicle densities the Boltzmann-like
teraction term can be written in the form@19#

S ]r̂ i
]t

D
int

5(
i 8

E dv8E
w,v8

dwE dw0W2~v,i uv8,i 8;w,i 8!

3 r̂ i 8~r ,v8,v0 ,t !r̂ i 8~r ,w,w0 ,t ! ~7a!

2(
i 8

E dv8E
w,v

dwE dw0W2~v8,i 8uv,i ;w,i !

3 r̂ i~r ,v,v0 ,t !r̂ i~r ,w,w0 ,t !. ~7b!

Term ~7a! describes an increase of phase-space den
r̂ i(r ,v,v0 ,t) by interactions of a vehicle with actual velocit
v8 and desired velocityv0 on line i 8 with a slower vehicle
with actual velocityw,v8 and desired velocityw0 causing
the former vehicle to change its velocity tov,v8 or its lane
to iÞ i 8. The frequency of such interactions is proportion
to the phase-space densityr̂ i 8(r ,w,w0 ,t) of hindering ve-
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5500 55DIRK HELBING AND ANDREAS GREINER
hicles and the phase-space densityr̂ i 8(r ,v8,v0 ,t) of vehicles
which can be affected by slower vehicles. Analogously, te
~7b! describes a decrease of phase-space den
r̂ i(r ,v,v0 ,t) by interactions of a vehicle with actual velocit
v and desired velocityv0 on line i with a slower vehicle with
actual velocityw,v and desired velocityw0 causing the
former vehicle to change its velocity tov8,v or its lane to
i 8Þ i . Since the interaction is assumed not to influence
desired velocitiesv0, w0, the interaction rateW2 is indepen-
dent of these. However, the interaction ra
W2(v8,i 8uv,i ;w,i ) is proportional to the relative velocity
uv2wu of approaching vehicles. Therefore we have the f
lowing relation:

W2~v8,i 8uv,i ;w,i !5pi
1uv2wud i 8~ i11!d~v82v ! ~8a!

1pi
2uv2wud i 8~ i21!d~v82v ! ~8b!

1~12pi !uv2wud i 8 id~v82w!. ~8c!

Term ~8a! describes an undelayed overtaking in la
i 85 i11 without any change of velocity (v85v) by vehicles
which would be hindered by slower vehicles in lanei . pi

1

denotes the corresponding probability of immediate overt
ing. Analogously, term~8b! reflects undelayed overtakin
maneuvers in lanei 85 i21 with probabilitypi

2 . Term ~8c!
with

pi5pi
11pi

2 ~9!

delineates situations where a vehicle cannot be immedia
overtaken by a faster vehicle so that the latter must sta
the same lane (i 85 i ) and decelerate to the velocityv85w of
the hindering vehicle.

We come now to the specification of the lane-chang
term (]r̂ i /]t)LC . This has the form of a master equation:

S ]r̂ i
]t

D
LC

5 (
i 8~Þ i !

W1~ i u i 8!r̂ i 8~r ,v,v0 ,t ! ~10a!

2 (
i 8~Þ i !

W1~ i 8u i !r̂ i~r ,v,v0 ,t !. ~10b!

Term ~10a! describes an increase of phase-space den
r̂ i(r ,v,v0 ,t) due to changes from lanei 8Þ i to lane i by
vehicles with actual velocityv and desired velocityv0. The
frequency of lane changing maneuvers is proportional to
phase-space densityr̂ i 8(r ,v,v0 ,t) of vehicles which may be
interested in lane-changing. Analogously, term~10b! reflects
changes from lanei to another lanei 8 causing a decrease o
r̂ i(r ,v,v0 ,t). For the corresponding rateW1( i 8u i ) of lane-
changing maneuvers we have the relation

W1~ i 8u i !5
1

Ti
1 d i 8~ i11!1

1

Ti
2 d i 8~ i21! , ~11!

since vehicles can only change to the neighboring la
i 85 i61. Ti

1 (Ti
2) denotes thewaiting timesfor delayed

overtaking in or spontaneous lane-changing maneuvers to
left-hand~right-hand! lane.
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Due to different legal regulations, the explicit form of th
overtaking probabilitiespi

6 and the waiting timesTi
6 in de-

pendence on the vehicle densities is different in Americ
countries than in European ones. A more detailed discus
of this aspect is presented in Ref.@19#.

III. DERIVATION OF MACROSCOPIC
TRAFFIC EQUATIONS

The gas-kinetic traffic equations are not very suitable
computer simulations since they contain too many variab
Moreover, the phase-space densities are very small quan
and therefore subject to considerable fluctuations so th
comparison with empirical data is difficult. However, th
special value of gas-kinetic traffic equations is that they
low a systematic derivation of dynamic equations for t
macroscopic~collective! quantities one is mainly intereste
in.

A. Definition of variables

The most relevant macroscopic quantities are the veh
densities

r i~r ,t !5E dvE dv0r̂ i~r ,v,v0 ,t ! ~12!

and the average velocities

Vi~r ,t ![^v& i5E dvvPi~v;r ,t ! ~13!

in lanesi . Here, we have applied the notation

Fi~r ,t ![^ f ~v,v0!& i5E dvE dv0f ~v,v0!
r̂ i~r ,v,v0 ,t !

r i~r ,t !
~14!

and introduced the distribution of actual velocities

Pi~v;r ,t !5E dv0
r̂ i~r ,v,v0 ,t !

r i~r ,t !
5

r̃ i~r ,v,t !
r i~r ,t !

~15!

in lane i . Analogous quantities can be defined for vehic
entering and leaving the road at entrances and exits, res
tively.

n i
6~r ,t !5E dvE dv0n i

6~r ,v,v0 ,t ! ~16!

are the rates of entering and leaving vehicles, and

Vi
6~r ,t ![^v& i

65E dvvPi
6~v;r ,t ! ~17!

their average velocities, where

Pi
6~v;r ,t !5E dv0

n̂ i
6~r ,v,v0 ,t !

n i
6~r ,t !

~18!

are the velocity distributions of entering and leaving v
hicles, respectively. In addition, we will need the veloci
variance
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u i~r ,t ![^@v2Vi~r ,t !#
2& i

5E dv@v2Vi~r ,t !#
2Pi~v;r ,t !5^v2& i2~^v& i !

2 ~19!

and the average desired velocity

V0i~r ,t !5E dvE dv0v0
r̂ i~r ,v,v0 ,t !

r i~r ,t !
~20!

on each lanei as well as the average interaction rate

1

Ti
0 5

1

r i~r ,t !
E dv r̃ i~r ,v,t !E

w,v
dw~v2w!r̃ i~r ,w,t ! ~21!

of a vehicle in lanei with other vehicles in the same lane

B. Derivation of moment equations

We are now ready to derive the desired macroscopic t
fic equations from the gas-kinetic equation~2! with Eqs.~3!,
~4!, ~7!, ~8!, ~10!, and ~11!. Integration with respect tov0
gives us the reduced gas-kinetic traffic equation

]r̃ i

]t
1

]

]r
~ r̃ iv !1

]

]v S r̃ i

Ṽ0i~v !2v
t i

D ~22a!

52~12pi !r̃ i~r ,v,t !E dw~v2w!r̃ i~r ,w,t ! ~22b!

1pi21
1 r̃ i21~r ,v,t !E

w,v
dw~v2w!r̃ i21~r ,w,t ! ~22c!

1pi11
2 r̃ i11~r ,v,t !E

w,v
dw~v2w!r̃ i11~r ,w,t ! ~22d!

2~pi
11pi

2!r̃ i~r ,v,t !E
w,v

dw~v2w!r̃ i~r ,w,t ! ~22e!

1
1

Ti21
1 r̃ i21~r ,v,t !2

1

Ti
1 r̃ i~r ,v,t ! ~22f!
f-

1
1

Ti11
2 r̃ i11~r ,v,t !2

1

Ti
2 r̃ i~r ,v,t ! ~22g!

1 ñ i
1~r ,v,t !2 ñ i

2~r ,v,t !, ~22h!

with

Ṽ0i~v ![Ṽ0i~v;r ,t !5E dv0v0
r̂ i~r ,v,v0 ,t !

r̃ i~r ,v,t !
~23!

and

ñ i
6~r ,v,t !5E dv0n̂ i

6~r ,v,v0 ,t !. ~24!

In formula ~22!, the deceleration term~22b! stems from Eq.
~8c!, the terms~22c!–~22e! reflecting immediate overtaking
come from Eqs.~8a! and ~8b!, and the lane-changing term
~22f!, ~22g! originate from Eq.~11!. The adaptation term
(]r̂ i /]t)ad yields no contribution.

We will now derive equations for the moments^vk& by
multiplying Eq. ~22! with vk and integrating with respect to
v. Due to

E dvvk
]

]v S r̃ i

Ṽ0i~v !2v
t i

D 52E dvkvk21S r̃ i

Ṽ0i~v !2v
t i

D
52

kr i
t i

~^vk21v0& i2^vk& i !

~25!

and

~12pi !E dv r̃ i~r ,v,t !E dw~wvk2vk11!r̃ i~r ,w,t !

5~12pi !~r i !
2~^v& i^v

k& i2^vk11& i ! ~26!

we obtain the macroscopic moment equations
]

]t
~r i^v

k& i !1
]

]r
~r i^v

k11& i !5
kr i
t i

~^vk21v0& i2^vk& i !1~12pi !~r i !
2~^v& i^v

k& i2^vk11& i !1
pi21

1

Ti21
0 r i21^v

k& i21

2
pi

1

Ti
0 r i^v

k& i1
pi11

2

Ti11
0 r i11^v

k& i112
pi

2

Ti
0 r i^v

k& i1
1

Ti21
1 r i21^v

k& i212
1

Ti
1 r i^v

k& i

1
1

Ti11
2 r i11^v

k& i112
1

Ti
2 r i^v

k& i1n i
1~r ,t !^vk& i

12n i
2~r ,t !^vk& i

2 . ~27!

Here, we have introduced the notation

^vk& i
65E dvE dv0v

k
n̂ i

6~r ,v,v0 ,t !

n i
6~r ,t !

5E dvvk
ñ i

6~r ,v,t !

n i
6~r ,t !

~28!

and applied the approximation
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E dv r̃ j~r ,v,t !E
w,v

dwvk~v2w!r̃ j~r ,w,t !'^vk& jE dv r̃ j~r ,v,t !E
w,v

dw~v2w!r̃ j~r ,w,t !5^vk& j
r j~r ,t !

Tj
0 , ~29!
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which is empirically justified due to the smallness of t
velocity distributions Pj (v;r ,t) ~i.e., due to Au j!Vj
@10,19#!.

C. Fluid-dynamic multilane traffic equations

In order to derive dynamic equations for the densitiesr i
and average velocitiesVi , we need the relations

^v2& i5^@Vi1~v2Vi !#
2& i

5~Vi !
212Vi^v2Vi& i1^~v2Vi !

2& i

5~Vi !
21u i ~30!

and

r i
]Vi

]t
5

]

]t
~r i^v& i !2Vi

]r i
]t

. ~31!

Applying these and and using the abbreviations

1

t i
6 5

pi
6

Ti
0 1

1

Ti
6 , ~32!

Eq. ~27! gives us the density equations

]r i
]t

1Vi

]r i
]r

52r i
]Vi

]r
1n i

1~r ,t !2n i
2~r ,t ! ~33a!

1
r i21

t i21
1 2

r i
t i

1 1
r i11

t i11
2 2

r i
t i

2 .

~33b!

This result is similar to previous multi-lane models. How
ever, by some lengthy but straightforward calculations
additionally obtain the velocity equations

r i
]Vi

]t
1r iVi

]Vi

]r
52

]Pi
]r

1
r i
t i

~Vi
e2Vi ! ~34a!

1
r i21

t i21
1 ~Vi212Vi !1

r i11

t i11
2 ~Vi112Vi !

~34b!

1n i
1~Vi

12Vi !2n i
2~Vi

22Vi ! ~34c!

with the so-called traffic pressures@41,46,47#

Pi5r iu i ~35!

and the equilibrium velocities

Vi
e5V0i2t i~pi !@12r i~r i !#r iu i . ~36!

Equation ~34! corrects the phenomenological approach
Michalopouloset al. @28#. The terms containing the rate
n i

1 and n i
2 reflect entering and leaving vehicles, respe
e

y

-

tively. Whereas the terms~33a! and ~34a! correspond to the
effects of vehicle motion, of acceleration towards the dr
ers’ desired velocities, and of deceleration due to inter
tions, the terms~33b! and ~34b! arise from overtaking and
lane-changing maneuvers. Equation~34b! comes from differ-
ences between the average velocities in neighboring la
and tends to reduce them. The term~34c! has a form and
interpretation similar to Eq.~34b!. It is only negligible if
entering vehicles are able to adapt to the velocities in
merging lane and if exiting vehicles initially have an avera
velocity similar to that in the lane which they are leaving,
thatVi

6'Vi .
In order to close Eqs.~33! and ~34!, we must specify the

interaction rates 1/Ti
0 and the variancesu i . Utilizing that the

empirical velocity distributionsPi(v;r ,t) are approximately
normally distributed@10,24,44,46#, we have

Pi~v;r ,t !'
1

A2pu i~r ,t !
e2[v2Vi ~r ,t !]

2/[2u i ~r ,t !] , ~37!

which implies

1

Ti
0'r iAu i

p
. ~38!

With a detailed theoretical and empirical analysis it can
shown@9,19# that the variancesu i(r ,t) can be well approxi-
mated by equilibrium relationsu i

e(r i) which are given by the
implicit equation

u i
e~r i ![û i022t i~r i !@12pi

e~r i !#
r i@u i

e~r i !#
3/2

Ap
. ~39!

Here, pi
e denotes the overtaking probability of vehicles o

lane i , when the densitiesr j on the different lanesj are in
equilibrium. For the average desired velocitiesV0i we have

V0i[V0i~r ,t !'V̂0i~r ,t”! ~40!

since

P̂0i~v0 ;r ,t”!2P0i~v0 ;r ,t !'0 ~41!

due to the smallness ofTr .

IV. DERIVATION AND SIMULATION
OF A REDUCED MULTILANE MODEL

The velocity equations are mainly needed to model
observed traffic instabilities which lead to the spontane
formation of stop-and-go waves at medium densit
@5–8,10–12#. However, if one is not interested in the dens
oscillations but only in theaveragetemporal evolution of
traffic flow, the velocity equations can be eliminated. In o
der to do this, we will apply a method that has been s
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FIG. 1. The chosen velocity-density relationVi
e(r i) ( ) and the corresponding empirical data from the Dutch autobahn A9 (L).
n

sy

f

of a

ith
gested by Sela and Goldhirsch@48#: First, we introduce the
time averages

F̄ i~r ,t !5
1

DTEt2DT/2

t1DT/2

dtFi~r ,t ! ~42!

over the least common multipleDT of the occurring oscilla-
tion periodsDTi . Then, the quantitiesr̄ i(r ,t) and V̄i(r ,t)
will describe thecoarse-grainedtraffic dynamics, in other
words: the traffic dynamics on a slow time scale. Additio
ally, the time averages of the total time derivativesdr i /dt
anddVi /dt will approximately vanish:

dr i
dt

[
]r i
]t

1Vi

]r i
]r

'0,
dVi
dt

[
]Vi

]t
1Vi

]Vi

]r
'0. ~43!

This corresponds to the assumption that, in coordinate
tems moving with velocitiesVi(r ,t), the densitiesr i(r ,t)
and velocitiesVi(r ,t) oscillate around their~slowly chang-
ing! equilibrium values.

Now, we approximate time averagesFi(r i ,Vi) of
density- and velocity-dependent functionsFi(r i ,Vi) by a se-
ries in spatial derivatives ofr i andVi . For our purposes it is
sufficient to truncate the expansion after the first order@19#:

Fi~r i ,Vi !'F00~r i ,Vi !1F10~r i ,Vi !
]r i
]r

1F01~r i ,Vi !
]Vi

]r
.

~44!

With this and Eq.~43! we obtain from the time average o
velocity equations~34!
-

s-

Vi5

r i
t i
Vi
e~r i !1

r i21

t i21
1 Vi211

r i11

t i11
2 Vi112

]Pi~r i !

]r i

]r i
]r

r i
t i

1
r i21

t i21
1 1

r i11

t i11
2

.

~45!

Here, we have restricted our considerations to the case
freeway without entrances and exits. Resolving Eqs.~45!
with respect toVi leads to relations of the form

Vi5Vi~$r j%!2(
k

Dik~$r j%!

r i

]r k̄
]r

, ~46!

which only depends on the densitiesr j̄ and their gradients.
Inserting this into the density equations~33! finally leads to
the reduced equations

]r ī
]t

1
]

]r
@r iVi~$r j%!#5(

k

]

]r FDik~$r j%!
]rk
]r G1

r i21

t i21
1 2

r i
t i

1

1
r i11

t i11
2 2

r i
t i

2 . ~47!

If we neglect products of spatial derivatives we end up w
the coupled Burgers equations@49#
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FIG. 2. Representation of the density gradients of theidealized traffic pressurePi5ru i
e(r) of point-like vehicles (— —) and the

correctedpressure relation ( ) which takes into account their finite space requirements. Obviously, the increase of the corrected
pressure with density and the corrected traffic pressure itself diverge at the maximum densityrmax, so that the latter cannot be exceeded. F
this reason, the diffusion functionsDik also diverge forrk→rmax. The pressure relations have been reconstructed from empirical da
means of theoretical relations@10,19#.
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]r i
]t

1
]

]r
@r iVi~$r j%!#5(

k
Dik~$r j%!

]2rk
]r 2

1
r i21

t i21
1 2

r i
t i

1

1
r i11

t i11
2 2

r i
t i

2 . ~48!

On the right-hand side of this equation we have a sum
diffusion termswith density-dependent diffusion function
Dik . These cause a smoothing of sudden density chan
and prevent the formation of shock waves. This is the rea
why density gradients and especially products of spatial
rivatives are normally negligible, which justifies the appro
mation made with Eq.~48!. Apart from this, the diffusion
terms are very helpful for efficient and stable numerical
tegration schemes.

We will now focus on the simulation of multilane traffic
As an example, we investigate a two-lane autobahn~i.e., i
P$1,2%). For reasons of simplicity, in both lanes th
velocity-density relationsVi

e(r i) and pressure relation
Pi(r i) will be chosen identically. This is at least justified fo
congested traffic~with a density of 30 vehicles per kilomete
and lane or more!. The corresponding relations are depict
in Figs. 1 and 2. They have been reconstructed from em
cal data of the Dutch highway A9 between Haarlem a
Amsterdam with a speed limit of 120 km/h and take in
account corrections of the traffic equations for high densi
~for details see Refs.@10,19#!.
f

es
n
e-

-

i-
d

s

The lane-changing rates 1/t i
6 are chosen in accordanc

with an empirically validated model@50#:

1

t i
6 5b i

6r i~rmax2r i61!. ~49!

Therefore 1/t i
6 is proportional to the vehicle densityr i

which reflects the grade of obstruction by slower vehicles
lane i . The factor (rmax2r i61) reflects that vehicles can
change to the neighboring lanei61 less frequently the more
the density on it reaches themaximum densityrmax. For
German autobahns the parametersb i

6 have the following
values:

b1
150.17631023, b2

250.05631023,

b1
25b2

150. ~50!

The relationb1
1.b2

2 originates from the fact that the lef
lane is preferred in Germany, since overtaking is forbidd
in the right-hand lane.

Bottleneck situations can be simulated in the followi
way: We will assume that the right lane is closed betwe
placesr 0 and r 1. Then, the lane-changing rateb1

1 will be
considerably increased, butb2

2 will be zero on this stretch
and already a certain intervalDr before ~i.e., for
r 02Dr<r<r 1). b1

1 and Dr must be chosen sufficiently
large so that the right lane is empty up to the beginningr 0 of
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FIG. 3. Spatiotemporal evolution of the time-averaged densities on a two-lane freeway stretch of 40 km length with open b
conditions in the case of an overloaded temporary bottleneck situation~above: left lane; below: right lane!. The right lane is closed betwee
t510 min andt560 min on the stretch betweenr 0521 km andr 1525 km, and the vehicles in lane 1 try to get into lane 2 beginning
r 02Dr520 km. This suddenly increases the density in the left lane in the region of the bottleneck, whereas the right lane become
Already after a short time the most extreme clustering develops at the beginning of the bottleneck, where the vehicles of the close
to squeeze in the left lane. Since the capacity of the remaining lane is smaller than the total traffic volume, the left lane becomes ov
For this reason a congestion running upstream~tailback! builds up inboth lanes. On the other hand, the density after the bottleneck, w
two lanes are available again, is smaller than in front of it so that the vehicles can accelerate there. As a consequence, the traffi
already recovers in the course of the bottleneck. Att560 min, the lane closure is lifted and the traffic jam disappears.~Note: Due to the
different lane-changing rates the equilibrium density is somewhat greater than 40 vehicles per kilometer and lane in the left
somewhat smaller in the right lane.!
ic
d

de
te
er

ra-
etic
’s
a-
be

to
ch
re
the bottleneck. Simulation results for the traffic dynam
above and below capacity are presented in Figs. 3 an
respectively.

V. SUMMARY AND OUTLOOK

In this paper we have derived a macroscopic traffic mo
for unidirectional multilane roads. Our considerations star
from plausible assumptions about the behavior of driv
s
4,

l
d
-

vehicle units regarding acceleration, overtaking, decele
tion, and lane-changing maneuvers. The resulting gas-kin
traffic model is a generalization of Paveri-Fontana
Boltzmann-like traffic equation. It can be extended to situ
tions where different vehicle types or driving styles are to
investigated@19#.

The gas-kinetic traffic equations not only allow one
derive dynamic equations for the vehicle density in ea
lane, but also for the average velocity. In this way we we
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FIG. 4. Same as Fig. 3, but for a bottleneck situation below capacity. At an average density of ten vehicles per kilometer and
traffic capacity of one lane is large enough to cope with the total traffic volume. Therefore no congestion running upstream build
in the left lane the density is increased in the region of the bottleneck. After the lane closure is lifted, the traffic jam, which was pr
localized at the bottleneck, causes a damped density wave. This propagates along the freeway with a velocity that is slower than t
vehicle velocity. Due to lane-changing maneuvers, the right lane also develops a propagating density wave.
u
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it
able to extend and correct previous phenomenological m
tilane models. Overtaking and lane-changing maneuvers
explicitly taken into account, so that the interactions betwe
neighboring lanes are included.

We have then eliminated the velocity equations in or
to obtain a reduced model that allows efficient compu
simulations. The resulting density equations describe the
erage temporal evolution of traffic on a slow time sca
They contain diffusion terms which diverge at maximu
densityrmax if the finite space requirements of vehicles a
taken into account. This guarantees thatrmax cannot be ex-
ceeded and density shocks are smoothed out. The latt
l-
re
n

r
r
v-
.

is

important for realistic results and stable numerical integ
tion schemes. Finally, the reduced multilane traffic mo
has been applied to the difficult case of bottleneck situatio
The computational results were very plausible. Con
quently, the model can be used to investigate a numbe
questions concerning the optimization of traffic flow.

~1! In what way does on-ramp traffic influence and des
bilize the traffic flow in the other lanes? How does the d
stabilization effect depend on the traffic volume, the leng
of the on-ramp lane, the total lane number, etc.?

~2! In case of a reduction of the number of lanes, is
better to close the leftmost or the rightmost lane?
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~3! Is the organization of American freeways or of Eur
pean autobahns more efficient, or would a suitable mixt
of both be most efficient? Remember that American fr
ways are characterized by uniform speed limits and the
that overtaking as well as lane changing are allowed in b
neighboring lanes. In contrast, on European autobahns o
no speed limit is prescribed~at least in Germany! and aver-
age velocity normally increases with growing lane numb
since overtaking is only allowed in the left-hand lane.
r.

o-

nd

o-

f

el
e
-
ct
th
en

r

~4! In which traffic situations do stay-in-lane recomme
dations increase the efficiency of roads?
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